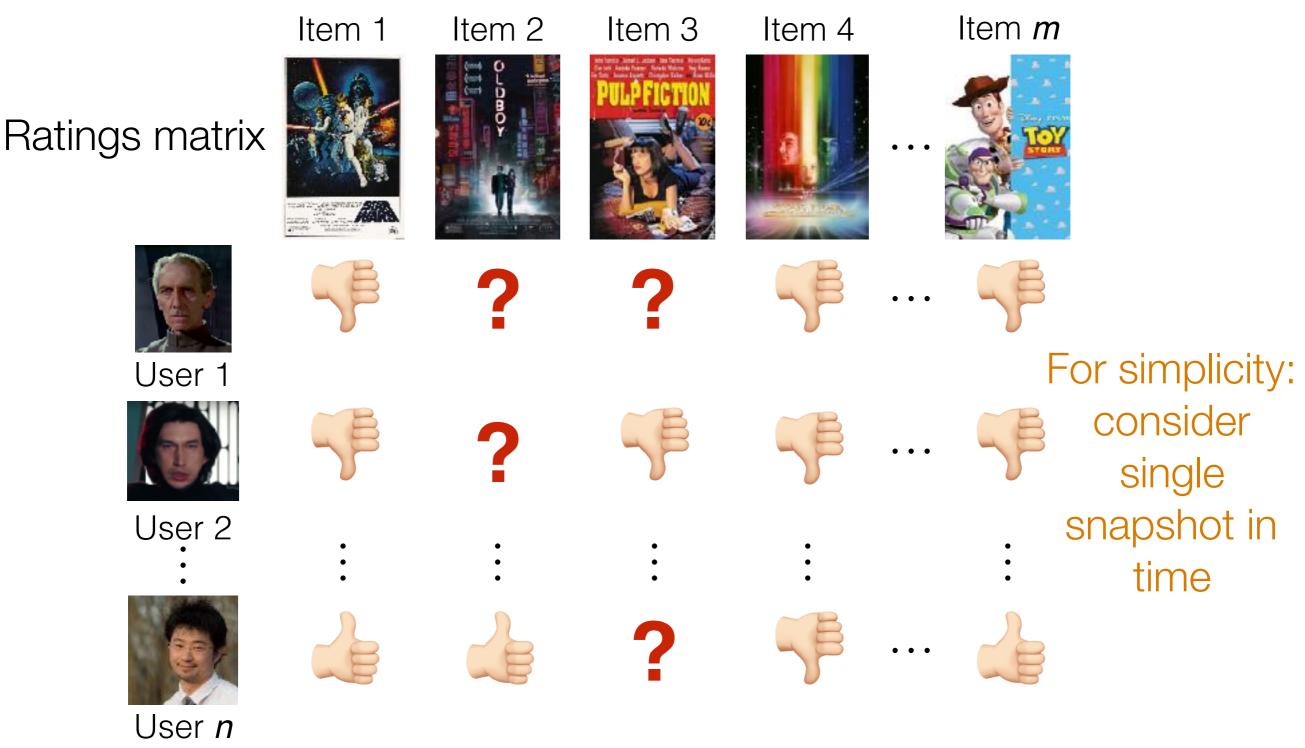


Introduction to Clustering

George Chen

galloway-netflix-could-be-the-next-300-billion-company.jpg

Movie Recommendation Data



We can also scrape IMDb for a lot of semantic information (actresses, actors, genres, reviews, etc) about movies/TV shows

When looking for structure, it's helpful to hypothesize what structure there might be

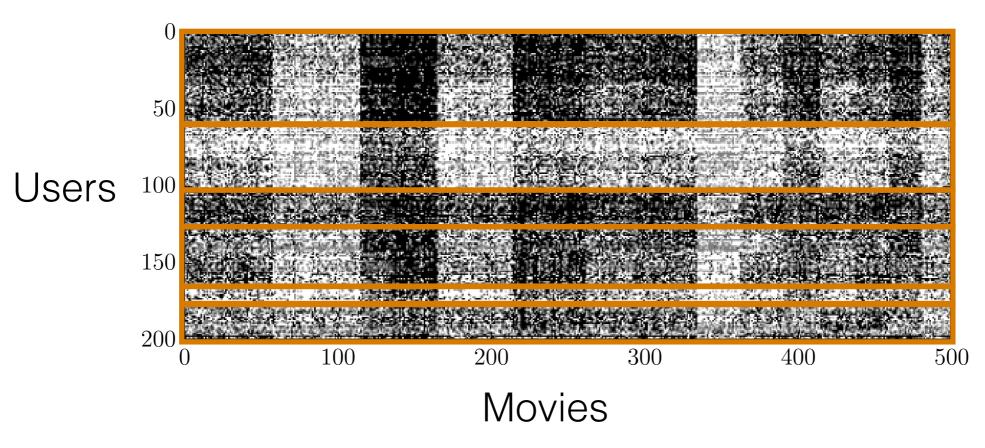
Movie Recommendation Data



Simple hypothesis: There are clusters of users with similar taste

Is the Hypothesis on Users True?

black = user dislikes movie white = user likes movie



There are blocks of similar users!

In fact there are blocks of similar items as well!

Dense part of Netflix Prize data

The Art of Defining Similarity

• There usually is no "best" way to define similarity

Example: cosine similarity between users

User *u*

$$Y_u$$
 +1 -1

$$Y_{v}$$
 +1 +1

$$\frac{\langle Y_u, Y_v \rangle}{\|Y_u\| \|Y_v\|} = 0$$

The Art of Defining Similarity

There usually is no "best" way to define similarity

Example: cosine similarity
$$\frac{\langle Y_u, Y_v \rangle}{\|Y_u\| \|Y_v\|}$$

Also popular: define a distance first and then turn it into a similarity

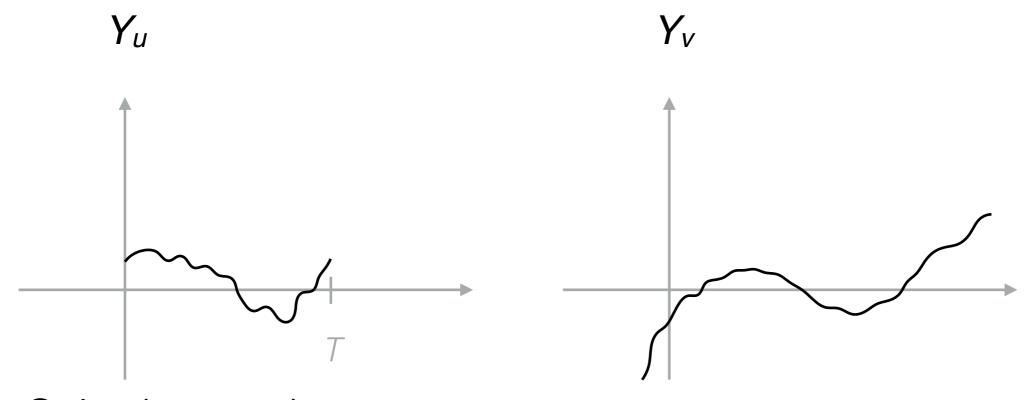
Example: Euclidean distance
$$||Y_u - Y_v||$$

Turn into similarity with decaying exponential

$$\exp(-\gamma || Y_u - Y_v ||)$$
 where $\gamma > 0$

Example: Time Series

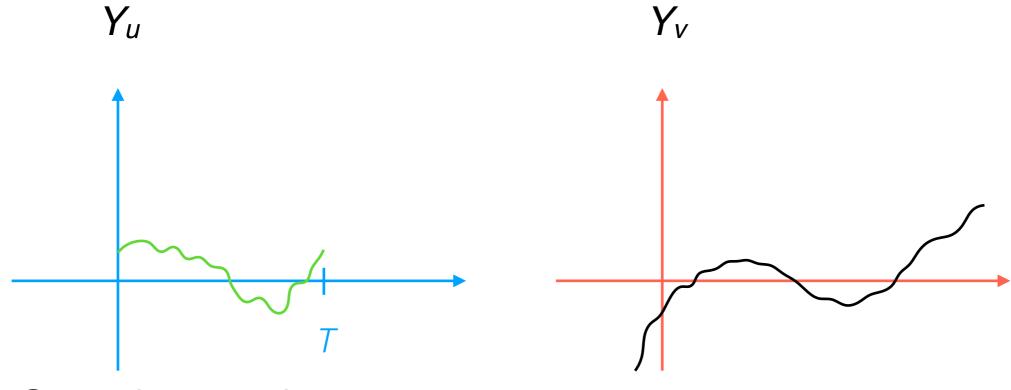
How would you compute a distance between these?



Only observe time steps between 0 and *T*

Example: Time Series

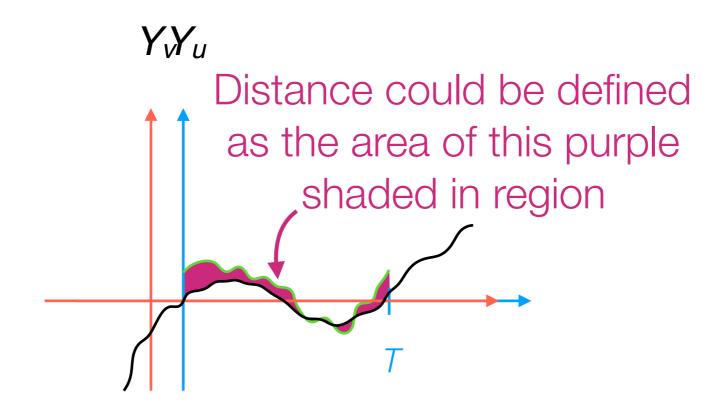
How would you compute a distance between these?



Only observe time steps between 0 and *T*

Example: Time Series

How would you compute a distance between these?



One solution: Align them first

In practice: for time series, very popular to use "dynamic time warping" to first align (it works kind of like how spell check does for words)

Similarity Diagnostics

- As you try different similarity functions, easy thing to check:
 - Pick any data point
 - Compute its similarity to all the other data points, and rank them in decreasing over from most similar to least similar
 - Inspect the top most similar data points do they seem reasonable?

If the most similar points are not interpretable, it's quite likely that your similarity function isn't very good =(

Going from Similarities to Clusters

There's a whole zoo of clustering methods

Two main categories we'll talk about:

Generative models

- 1. Pretend data generated by specific model with parameters
- 2. Learn the parameters ("fit model to data")
- 3. Use fitted model to determine cluster assignments

Hierarchical clustering

Top-down: Start with everything in 1 cluster and decide on how to recursively split

Bottom-up: Start with everything in its own cluster and decide on how to iteratively merge clusters

We start here

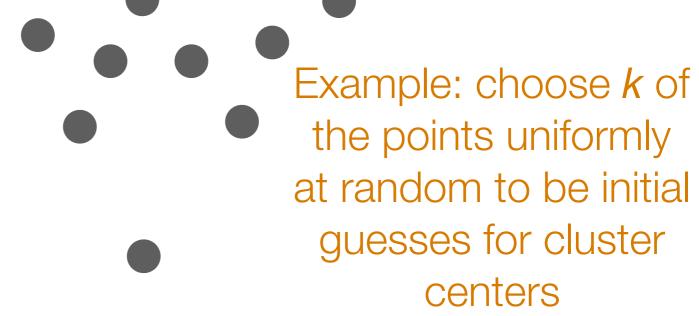
We're going to start with perhaps the most famous of clustering methods

It won't yet be apparent what this method has to do with generative models

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are



Step 0: Pick k

We'll pick k = 2

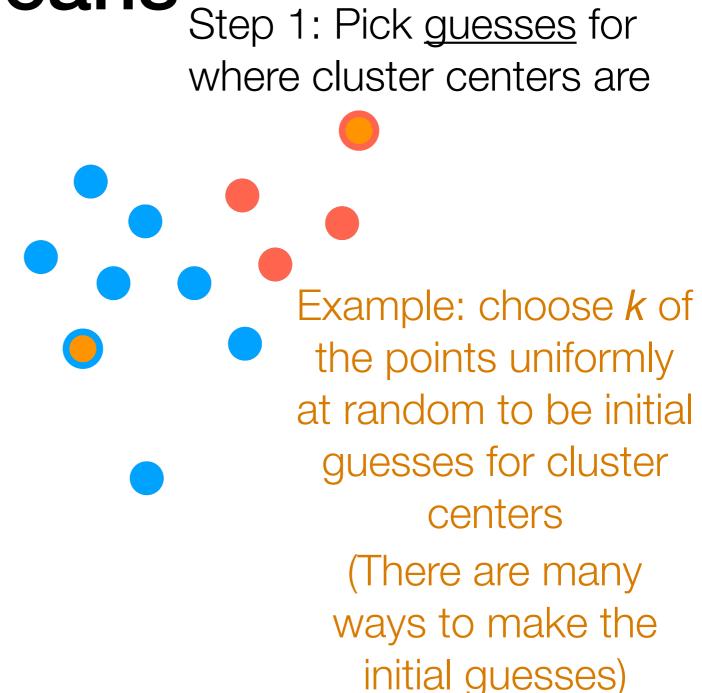
Step 1: Pick <u>guesses</u> for where cluster centers are

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many ways to make the initial guesses)

Step 0: Pick k

We'll pick k = 2



Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

initial guesses)

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many ways to make the

Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

initial guesses)

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many ways to make the

Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

Example: choose k of the points uniformly at random to be initial guesses for cluster centers (There are many ways to make the initial guesses)

Repeat Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

initial guesses)

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many ways to make the

Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many ways to make the initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many

ways to make the

initial guesses) closest cluster

Repeat Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

initial guesses)

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many ways to make the

Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

ways to make the

initial guesses)

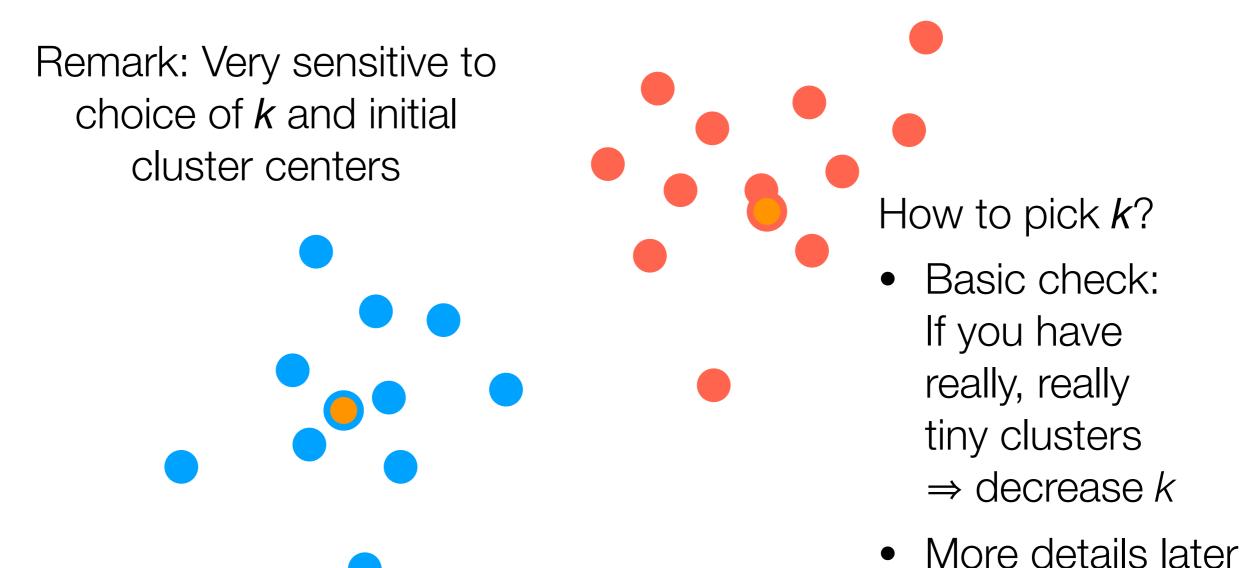
Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Final output: cluster centers, cluster assignment for every point

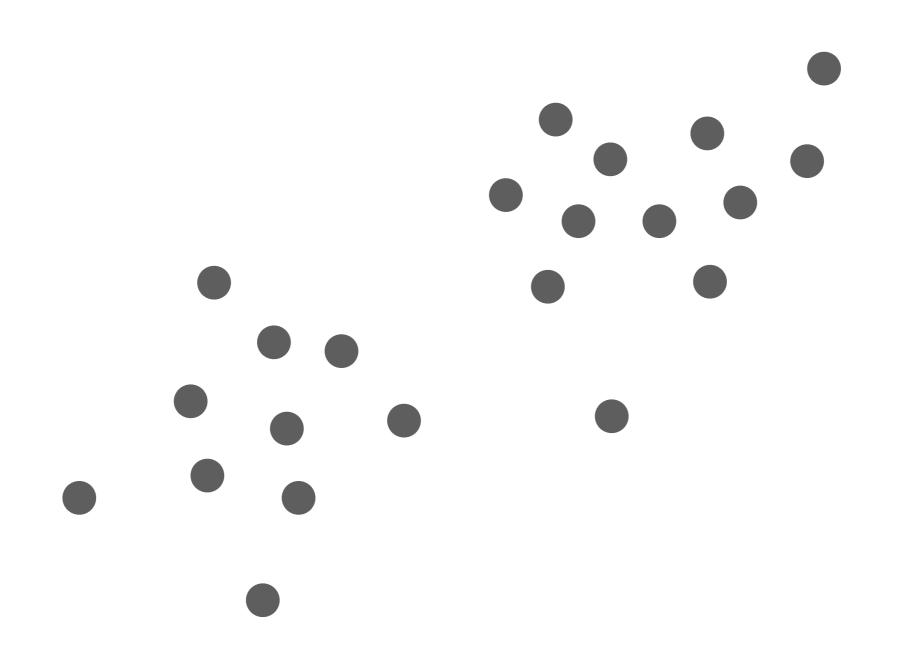


Suggested way to pick initial cluster centers: "k-means++" method (rough intuition: incrementally add centers; favor adding center far away from centers chosen so far)

When does k-means work well?

k-means is related to a more general model, which will help us understand k-means

Gaussian Mixture Model (GMM)



What random process could have generated these points?

Generative Process

Think of flipping a coin

each outcome: heads or tails

Each flip doesn't depend on any of the previous flips

Generative Process

Think of flipping a coin

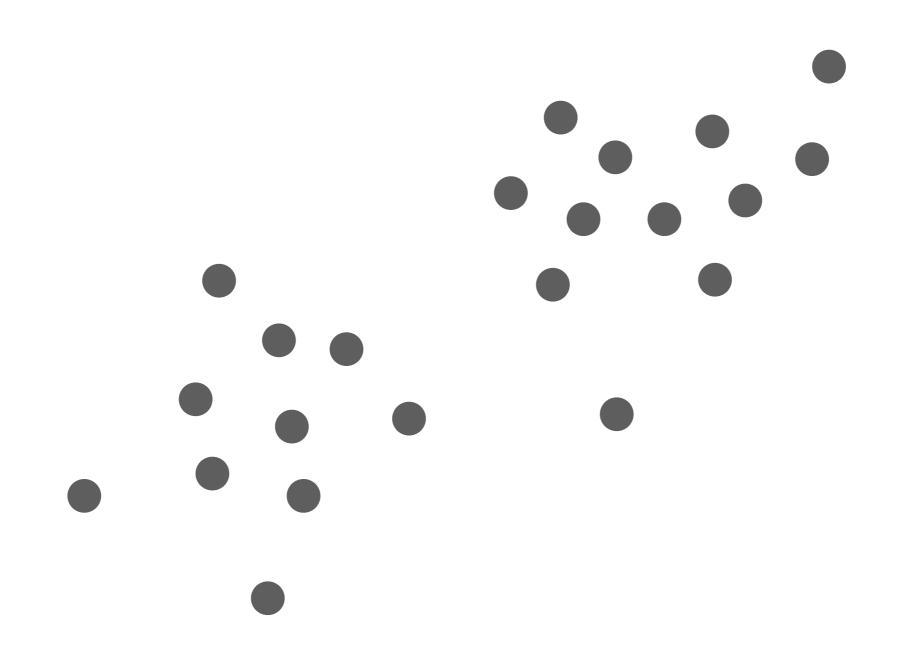
each outcome: 2D point

Each flip doesn't depend on any of the previous flips

Okay, maybe it's bizarre to think of it as a coin...

If it helps, just think of it as you pushing a button and a random 2D point appears...

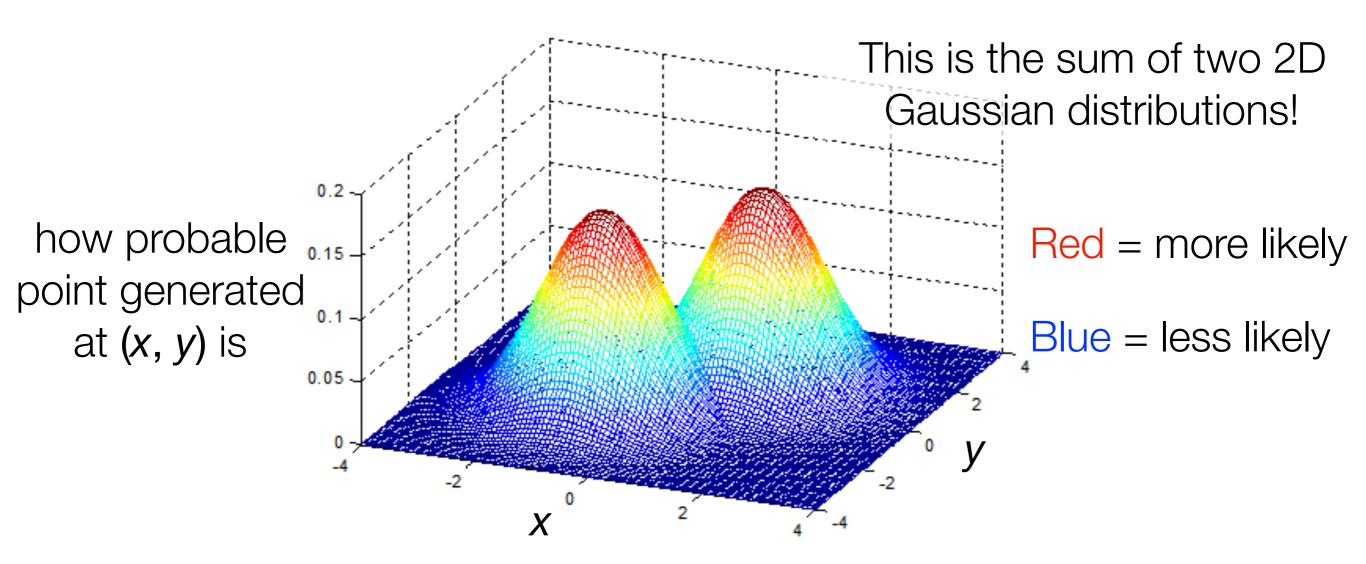
Gaussian Mixture Model (GMM)



We now discuss a way to generate points in this manner

Gaussian Mixture Model (GMM)

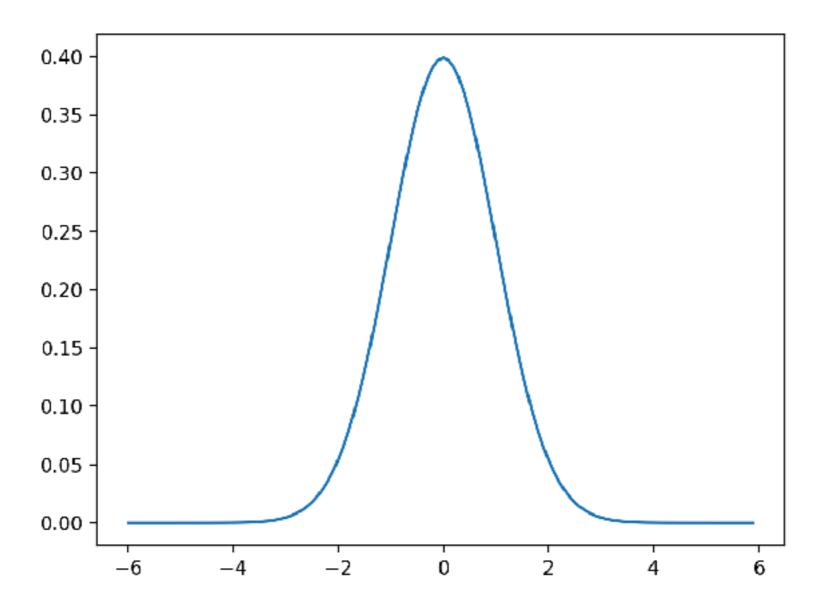
Assume: points sampled independently from a probability distribution



Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

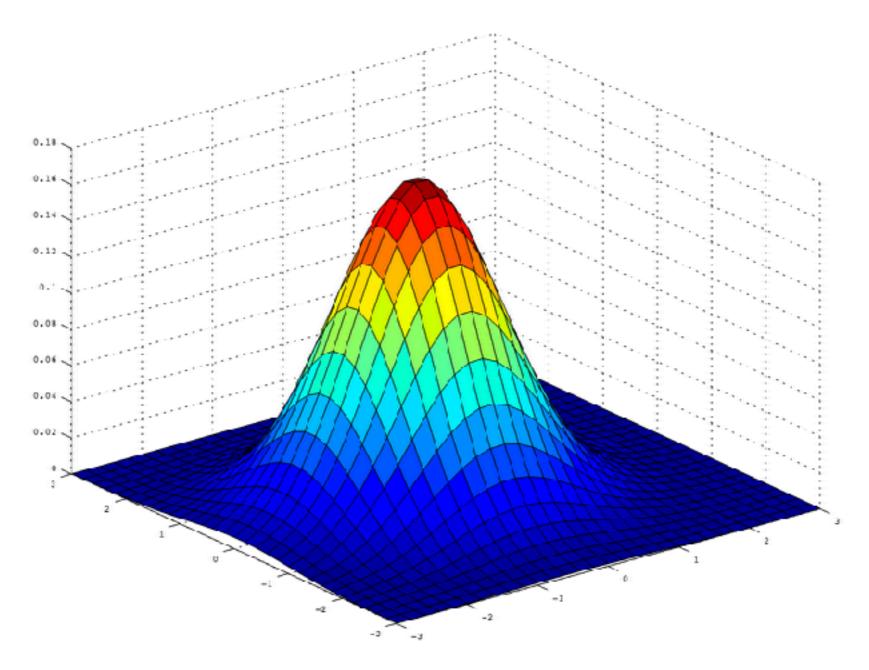
Quick Reminder: 1D Gaussian



This is a 1D Gaussian distribution

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png

2D Gaussian

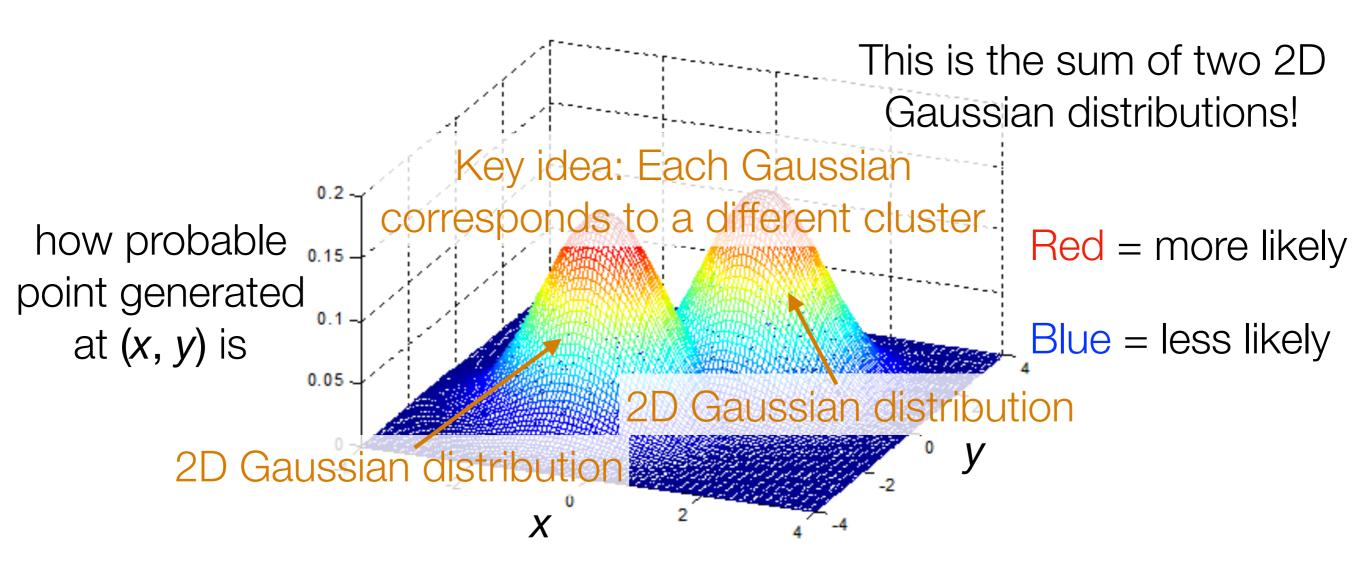


This is a 2D Gaussian distribution

Image source: https://i.stack.imgur.com/OIWce.png

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution



Example of a 2D probability distribution

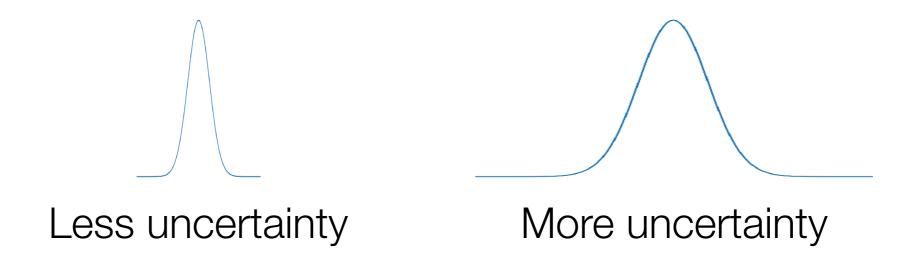
Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains (We've been looking at d = 2)
 - Each mountain corresponds to a different cluster
 - Different mountains can have different peak heights
 - One missing thing we haven't discussed yet: different mountains can have different shapes

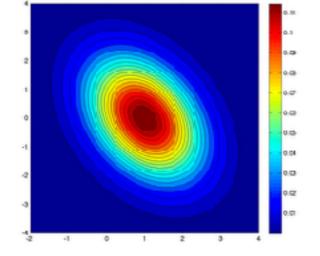
2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian



In 2D, you can more generally have ellipse-shaped Gaussians

Ellipse enables encoding relationship between variables



Can't have arbitrary shapes

Top-down view of an example 2D Gaussian distribution

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/homework/assign5/a52dgauss.jpg

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains (We've been looking at d = 2)
 - Each mountain corresponds to a different cluster
 - Different mountains can have different peak heights
 - Different mountains can have different ellipse shapes (captures "covariance" information)

Cluster 1

Cluster 2

Probability of generating a Probability of generating a point from cluster 1 = 0.5 point from cluster 2 = 0.5

Gaussian mean = 5

Gaussian mean = -5

Gaussian std dev = 1

Gaussian std dev = 1

What do you think this looks like?

Cluster 1

Probability of generating a point from cluster 1 = 0.5

Gaussian mean = -5

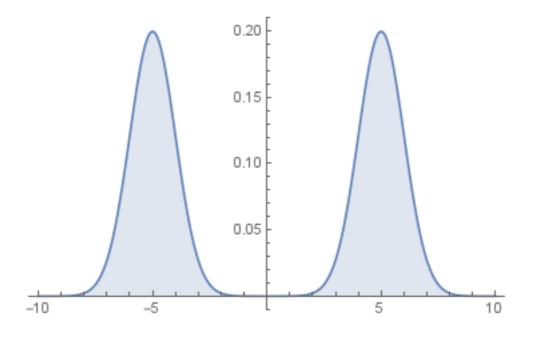
Gaussian std dev = 1

Cluster 2

Probability of generating a point from cluster 2 = 0.5

Gaussian mean = 5

Gaussian std dev = 1



Cluster 1

Cluster 2

Probability of generating a point from cluster 1 = 0.7

Probability of generating a point from cluster 2 = 0.3

Gaussian mean = -5

Gaussian mean = 5

Gaussian std dev = 1

Gaussian std dev = 1

What do you think this looks like?

Cluster 1

Probability of generating a point from cluster 1 = 0.7

Gaussian mean = -5

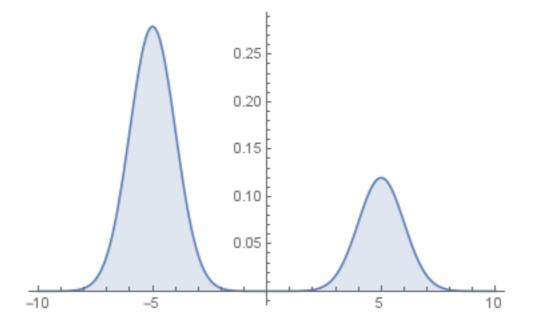
Gaussian std dev = 1

Cluster 2

Probability of generating a point from cluster 2 = 0.3

Gaussian mean = 5

Gaussian std dev = 1



Cluster 1

Cluster 2

Probability of generating a point from cluster 1 = 0.7

Probability of generating a point from cluster 2 = 0.3

Gaussian mean = -5

Gaussian mean = 5

Gaussian std dev = 1

Gaussian std dev = 1

- 1. Flip biased coin (with probability of heads 0.7)
- 2. If heads: sample 1 point from Gaussian mean -5, std dev 1 If tails: sample 1 point from Gaussian mean 5, std dev 1

Cluster 1

Cluster 2

Probability of generating a point from cluster $1 = \pi_1$

Gaussian mean = μ_1

Gaussian std dev = σ_1

Probability of generating a point from cluster $2 = \pi_2$

Gaussian mean = μ_2

Gaussian std dev = σ_2

- 1. Flip biased coin (with probability of heads π_1)
- 2. If heads: sample 1 point from Gaussian mean μ_1 , std dev σ_1 If tails: sample 1 point from Gaussian mean μ_2 , std dev σ_2

Cluster 1

Cluster k

Probability of generating a point from cluster $1 = \pi_1$

...

Probability of generating a point from cluster $k = \pi_k$

Gaussian mean = μ_1

Gaussian mean = μ_k

Gaussian std dev = σ_1

Gaussian std dev = σ_k

- 1. Flip biased k-sided coin (the sides have probabilities π_1, \ldots, π_k)
- 2. Let Z be the side that we got (it is some value 1, ..., k)
- 3. Sample 1 point from Gaussian mean μ_Z , std dev σ_Z

Cluster 1

Cluster k

Probability of generating a point from cluster $1 = \pi_1$

...

Probability of generating a point from cluster $k = \pi_k$

Gaussian mean = μ_1

Gaussian mean = μ_k

Gaussian std dev = σ_1

Gaussian std dev = σ_k

- 1. Flip biased k-sided coin (the sides have probabilities π_1, \ldots, π_k)
- 2. Let Z be the side that we got (it is some value 1, ..., k)
- 3. Sample 1 point from Gaussian mean μ_Z , std dev σ_Z

Cluster 1

Cluster k

Probability of generating a point from cluster $1 = \pi_1$

Probability of generating a point from cluster $k = \pi_k$

Gaussian mean = μ_1 2D point

Gaussian mean = μ_k 2D point

Gaussian **covariance** = Σ_1

Gaussian **covariance** = Σ_k

2x2 matrix

2x2 matrix

- 1. Flip biased k-sided coin (the sides have probabilities π_1, \ldots, π_k)
- 2. Let Z be the side that we got (it is some value 1, ..., k)
- 3. Sample 1 point from Gaussian mean μ_Z , covariance Σ_Z

GMM with k Clusters

Cluster 1

Cluster k

Probability of generating a point from cluster $1 = \pi_1$

Gaussian mean = μ_1

Gaussian covariance = Σ_1

Probability of generating a point from cluster $k = \pi_k$

Gaussian mean = μ_k

Gaussian covariance = Σ_k

- 1. Flip biased k-sided coin (the sides have probabilities π_1, \ldots, π_k)
- 2. Let Z be the side that we got (it is some value 1, ..., k)
- 3. Sample 1 point from Gaussian mean μ_Z , covariance Σ_Z

High-Level Idea of GMM

 Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

"All models are wrong, but some are useful."

-George Edward Pelham Box

High-Level Idea of GMM

 Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
 - Input: d-dimensional data points, your guess for k
 - Output: $\pi_1, \ldots, \pi_k, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k$
- After learning a GMM:
 - For any d-dimensional data point, can figure out probability of it belonging to each of the clusters

How do you turn this into a cluster assignment?

k-means

Step 0: Pick k

We'll pick k = 2

Step 1: Pick <u>guesses</u> for where cluster centers are

ways to make the

initial guesses)

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers

(There are many

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

k-means

Step 0: Pick k

Step 1: Pick guesses for

where cluster centers are

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

(Rough Intuition) Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Repeat until convergence:

Step 2: Compute probability of each point belonging to each of the *k* clusters

Step 3: Update **cluster means and covariances** carefully accounting for probabilities of each point belonging to each of the clusters

This algorithm is called the Expectation-Maximization (EM) algorithm specifically for GMM's (and approximately does maximum likelihood) (Note: EM by itself is a general algorithm not just for GMM's)

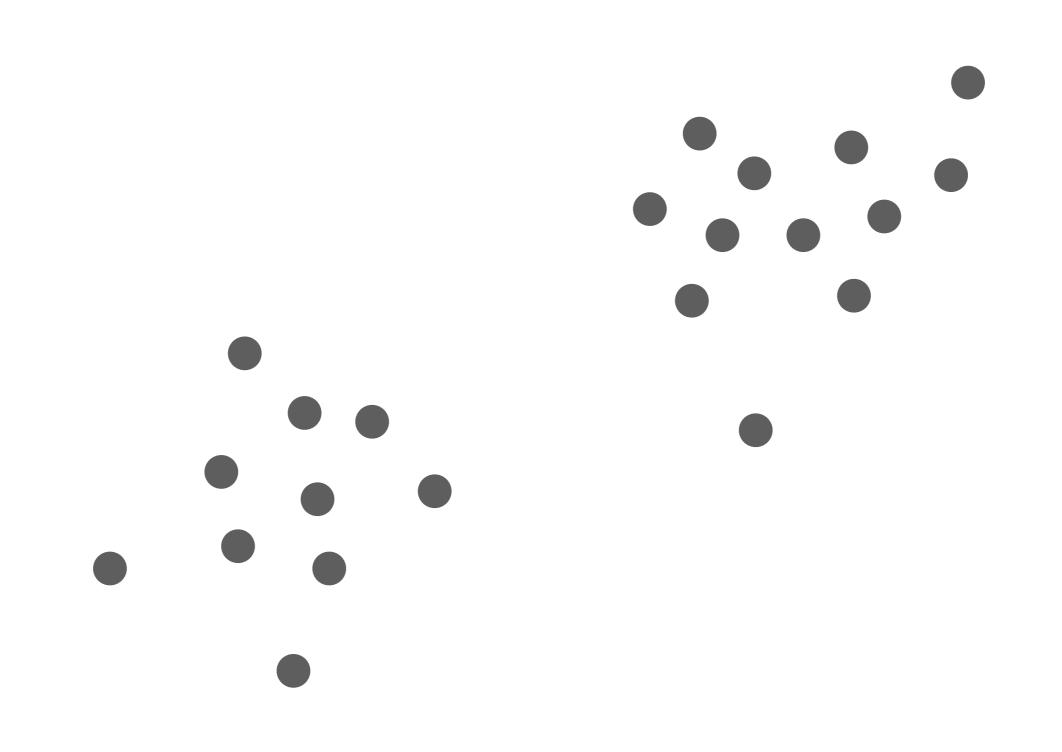
Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., in the 1D case it means they all have same std dev):

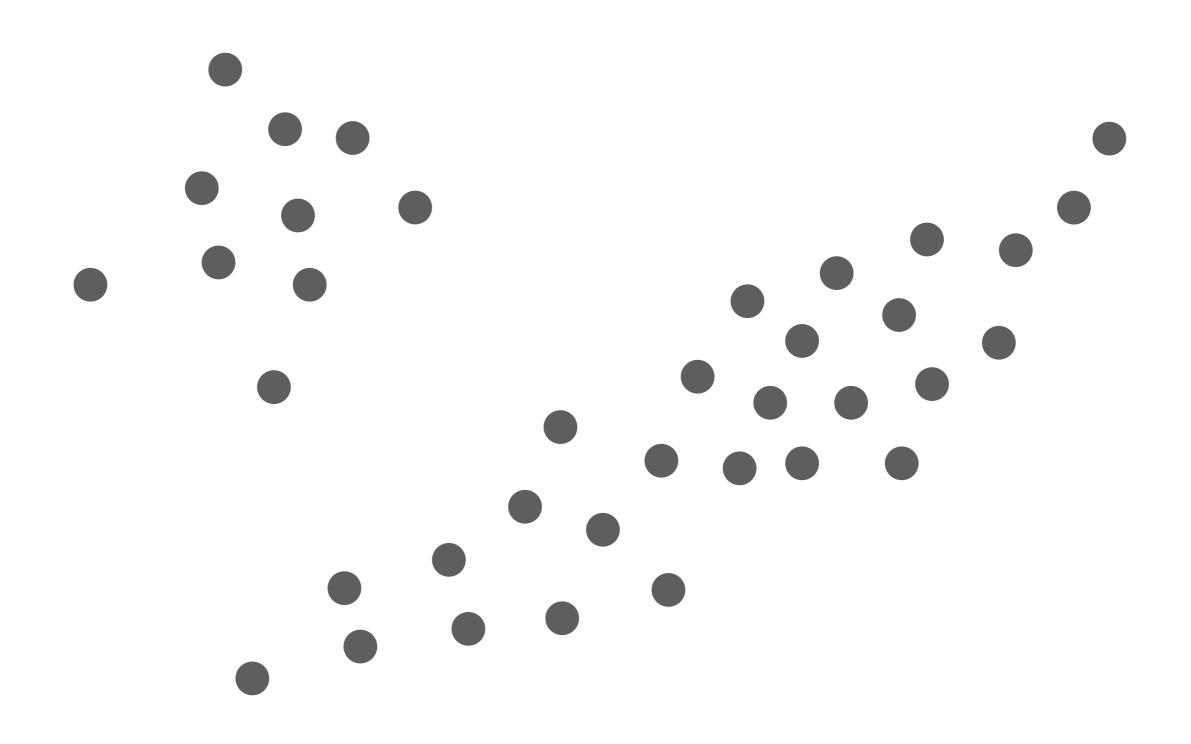
- k-means approximates the EM algorithm for GMM's
- Notice that k-means does a "hard" assignment of each point to a cluster, whereas the EM algorithm does a "soft" (probabilistic) assignment of each point to a cluster

Interpretation: We know when k-means should work! It should work when the data appear as if they're from a GMM with true clusters that "look like circles"

k-means should do well on this



But not on this



Learning a GMM

Demo